183 | 0 | 39 |
下载次数 | 被引频次 | 阅读次数 |
低信噪比水位信号对数据分析、异常提取造成了较大影响,为此,本文提出一种基于经验小波变换(EWT)、K均值聚类(Kmeans)与小波阈值(WT)的算法(简称“EWT-Kmeans-WT”算法),以实现对低信噪比井水位信号的有效去噪处理。EWT-Kmeans-WT算法能够准确识别并分离水位信号中的有用成分,有效消除噪声干扰,并恢复低信噪比水位信号的正常动态变化特征。对秭归井水位的去噪研究表明,该算法在恢复水位固体潮响应与气压响应方面表现优异,其信噪比(4.667 6)、波形相似系数(0.174 3)与平滑度(0.053 8)均较高,而均方误差(2.42×10-6)较小,去噪性能显著优于EWT、WT及EMD方法。此外,该算法还能较好地表现水位的全日波、半日波响应动态变化,固体潮的重构效果优于T_Tide调和分析。因此,EWT-Kmeans-WT算法在低信噪比水位信号的去噪领域具有较好的应用前景。
Abstract:The water level signal with low signal-to-noise ratio(low SNR) has a large negative impact on data analysis and seismic anomaly information extraction. For this reason,an algorithm based on Empirical Wavelet Transform(EWT),Kmeans clustering(Kmeans),and Wavelet Thresholding(WT) is proposed in this paper in order to achieve effective denoising of water level signal with low SNR. The EWT-Kmeans-WT algorithm can accurately separate and identify the useful signals in the water level signal, effectively eliminate the noise interference in the water level,and restore the normal dynamic signal components of the water level. The denoising study on the water level of wells at Zigui Seismic Station shows that the algorithm can better recover the dynamic changes,such as earth tides and barometric pressure effects,and its SNR(4.667 6),NCC(0.174 3),and RVR(0.053 8) are larger whereas the RMSE(2.42×10-6) is smaller than that of the EWT,WT,and EMD methods. In addition,the dynamic changes of the full-day and half-day tidal wave response of the water level are well represented,and the reconstruction effect of the solid tide is more in line with the actual situation than that rebuilt by the T_Tide software, which sheds a light on that the EWT-Kmeans-WT algorithm have good application prospects for denoising water level signals with low SNR.
[1]ELKHOURYJE,BRODSKYEE,AGNEWDC. Seismic waves increase permeability[J]. Nature, 2006, 441(7097):1135-1138.
[2]HSIEH P A , BREDEHOEFT J D , FARR O M.Determination of aquifer transmissivity from earth tide analysis[J]. Water Resource Transmissivity,1987,23(10):1824-1832.
[3]HUANG N,SHEN Z,LONG S,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society,1998(454):903-995.
[4]张东.复杂多分量信号分析及其在旋转机械故障诊断中的应用研究[D].北京:北京科技大学,2023.
[5]武安绪,李平安,鲁亚军,等.基于经验模态分解的形变信号滤波处理与异常提取[J].东北地震研究,2006,22(3):1-7.
[6]武安绪,张永仙,张晓东,等.地震前兆多尺度综合信息函数及其初步应用[J].东北地震研究,2007,23(3):1-9.
[7]孔祥瑞,翟丽娜,李梦莹,等.经验模态分解法在高频形变干扰分析中的应用[J].防灾减灾学报,2018,34(4):34-37.
[8]KONSTANTIN D, DOMINIQUE Z. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544.
[9]GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010.
[10]王彤洲,崔春生,刘双峰,等.基于经验小波变换和奇异值分解的冲击波降噪方法[J].探测与控制学报,2023,45(2):67-72.
[11]李高袁,帕孜来·马合木提,赵智强,等.基于EWT-WOA-SVM的三电平逆变器早期故障诊断[J].三峡大学学报(自然科学版),2023, 45(2):82-88.
[12]于依冉.基于K均值聚类和Transformer的压缩感知重构方法研究[D].济南:山东大学,2023.
[13]沙磊.一种新小波阈值算法的变形监测数据去噪方法[J].大地测量与地球动力学,2023, 43(8):847-850.
[14]唐贵基,王晓龙.参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J].西安交通大学学报,2015,49(5):73-80.
[15]RICH P,BOB B,STEVE L. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers&Geosciences,2002(28):929-937.
基本信息:
DOI:10.13693/j.cnki.cn21-1573.2025.03.002
中图分类号:P315.7
引用信息:
[1]冷崇标,王杰,张辉,等.基于EWT-Kmeans-WT算法的低信噪比井水位信号去噪研究[J].防灾减灾学报,2025,41(03):9-16.DOI:10.13693/j.cnki.cn21-1573.2025.03.002.
基金信息:
中国地震局地震预测预警业务项目(102152180180000009008); 2024年度中国地震局地震监测、预报、科研三结合课题(3JH-202401041); 中国地震局地震研究所和应急管理部自然灾害防治研究院基本科研业务费专项资助项目(IS202336347)