nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.41 17-23
基于Pasternak地基模型的断层错动下管道受力机理分析
基金项目(Foundation):
邮箱(Email):
DOI: 10.13693/j.cnki.cn21-1573.2025.03.003
摘要:

基于Pasternak双参数地基模型,建立了断层错动作用下埋地管道的变形受力分析模型,并推导了相应的计算方法。通过算例分析了不同剪切荷载、抗弯刚度和地基反力系数等关键参数对埋地管道的变形、弯矩、剪力和管道周围土体反力分布规律的影响。研究表明:管道抗弯刚度和土体反力系数是影响管道的变形和受力的主要因素,在管道设计时应选择合适的抗弯刚度,并适度提高地基反力系数,可有效改善管道与土体之间的变形协调及受力性能。研究结果为埋地管道的抗断层设计提供了参数优化理论依据,对提升地下管线工程的灾变防控能力具有重要的工程价值。

Abstract:

By introducing the Pasternak two-parameter foundation model, the calculation method of deformation and stress of buried pipeline under fault dislocation is derived. The influence of different shear load, bending stiffness and foundation reaction coefficient on the deformation, bending moment, shear force and the distribution of soil reaction force around the buried pipeline is analyzed by an example. The analysis shows that the bending stiffness of the pipeline and the soil reaction coefficient have a great influence on the deformation and stress of the pipeline. The appropriate bending stiffness should be selected in the pipeline design, and the foundation reaction coefficient should be appropriately increased, which can effectively improve the deformation coordination and stress performance between the pipeline and the soil. The results establish a theoretical framework for anti-fault pipeline design optimization, advancing disaster prevention in underground engineering.

参考文献

[1]国家发展改革委,国家能源局.关于印发《中长期油气管网规划》的通知:发改基础[2017]965号[EB/OL].(2017-05-19)[2024-01-25]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=423.

[2]李秋扬,赵明华,任学军,等.中国油气管道建设现状及发展趋势[J].油气田地面工程,2019,38(S1):14-17.

[3]马定乐,万琪,晏长根,等.老滑坡和断层影响下滑坡特征及处治措施研究[J].防灾减灾学报,2021,37(2):18-24.

[4]KLAR A,MARSHALL A M. Shell versus beam representation of pipes in the evaluation of tunneling effects on pipelines[J]. Tunnelling and Underground Space Technology,2008,23(4):431-437.

[5]KLAR A, MARSHALL A M. Linear elastic tunnel pipeline interaction:The existence and consequence of volume loss equality[J]. Géotechnique,2015,65(9):788-792.

[6]林存刚,黄茂松.基于Pasternak地基的盾构隧道开挖非连续地下管线的挠曲[J].岩土工程学报,2019,41(7):1200-1207.

[7]陶连金,王志岗,石城,等.基于Pasternak地基模型的断层错动下管线结构纵向响应的解析解[J].岩土工程学报,2022,44(9):1577-1586.

[8]金浏,李鸿晶.穿越逆冲断层的埋地管道非线性反应分析[J].防灾减灾工程学报,2010,30(2):130-134.

[9]仲永涛,李鸿晶,李秀菊.逆断层作用下埋地管线对周围土体的影响区域分析[J].防灾减灾工程学报,2017,37(6):938-944,957.

[10]国艳,张文静,肖遥,等.基于ABAQUS的埋地管道动力分析前处理[J].防灾减灾学报,2024,40(2):8-13,42.

[11]张治国,师敏之,张成平,等.类矩形盾构隧道开挖引起邻近地下管线变形研究[J].岩石力学与工程学报,2019,38(4):852-864.

[12]陈祥福.沉降计算理论及工程实例[M].北京:科学出版社,2005.

[13]PASTERNAK P L. Fundamentals of a new method of analyzing structures on an elastic foundation by means of two foundation constants[M]. Moscow:Gosudarstvennoe Izdatelstro Liberaturi Po Stroitelstvui Arkhitekture,1954.

[14]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005:1-181.

[15]FERRERO A M. The shear strength of reinforced rock joints[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1995,32(6):595-605.

基本信息:

DOI:10.13693/j.cnki.cn21-1573.2025.03.003

中图分类号:U172

引用信息:

[1]朱海西.基于Pasternak地基模型的断层错动下管道受力机理分析[J].防灾减灾学报,2025,41(03):17-23.DOI:10.13693/j.cnki.cn21-1573.2025.03.003.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文